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Abstract. It is shown that the transformation between ordinary and noncommutative Yang-Mills theory
as formulated by Seiberg and Witten is due to the equivalence of certain star products on the D-brane
world-volume.

1 Introduction

The noncommutativity of coordinates in D-brane physics
has lately received considerable attention. See [1] and ref-
erences therein, in particular [2–6]. It was examined thor-
oughly from different points of view. On one side the trans-
verse coordinates of N coinciding D-branes are described
by N × N matrices on the other side the end points of an
open string become noncommutative in the presence of
a constant B-field. We shall not go into details here and
just mention a fact that is most relevant to the present let-
ter: In both situations D-branes in the presence of a large
background gauge field can be equivalently described by
either commutative or noncommutative gauge fields.

In this letter we will consider the problem from the
D-brane world-volume perspective. The idea is the follow-
ing: We formulate the problem within the framework of
symplectic geometry and Kontsevich’s deformation quan-
tization to obtain abstract but general results independent
of particularities of specific (path integral) quantizations
[7–9]. An equivalence of certain star products will lead us
to a transformation between two quantities, which physi-
cally can be interpreted as ordinary and non-commutative
Yang-Mills fields. Within this approach an existence of
such a relation is a priori guaranteed. We then show that
such a transformation is necessarily identical to the trans-
formation proposed by Seiberg and Witten [1]. All this
can be done rigorously. In the last part of the letter we
will discuss how all this is related to the formulation that
uses a path integral representation of boundary states
[7,8].

2 Classical description

For the classical description of the problem the following
lemma of Moser [10] is crutial. Let M be a symplectic
manifold and ω = ωij(x)dxi ∧ dxj the symplectic form on

M . The symplectic form is closed dω = 0 and its coeffi-
cient matrix nondegenerate detωij(x) 6= 0 for all x ∈ M .
If ω′ is another symplectic form on M such that it belongs
to the same cohomology class as ω and if the t-dependent
form (t ∈ [0, 1])

Ω = ω + t(ω′ − ω) (1)

is nondegenerate, then

ω′ − ω = da (2)

for some 1-form a, the t-dependent vector field X, implic-
itly given by

iXΩ + a = 0 (3)

is well defined and

LXΩ ≡ d(iXΩ)+ iXdΩ+∂tΩ = −da+(ω′ −ω) = 0. (4)

This implies that all Ω(t) are related by coordinate trans-
formations generated by the flow of X: ρ∗

tt′Ω(t′) = Ω(t),
where ρ∗

tt′ is the flow of X. Setting ρ∗ = ρ∗
01 we have in

particular
ρ∗ω′ = ω. (5)

Explicitely

ρ∗ = e∂t+Xe−∂t
∣∣
t=0 = eθijaj∂i− 1

2 θikfklθ
ljaj∂i+o(θ3), (6)

where θijωjk = δi
k and fkl = ∂kal − ∂lak.

The only complication is that X may not be complete,
which is no problem for M compact. For noncompact M
(in our case an open domain in R

2n) we have to treat t as a
formal parameter and work with formal diffeomorphisms
given by formal power series in t. Specifying t = 1 amounts
to considering formal power series in the matrix elements
of (ω′−ω). This is the same as assuming that da is small or
ω large. Alternatively we could work with formal power
series in θij = ω−1

ij . In either case Ω is nondegenerate.
In this sense we always have a coordinate change on M
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which relates the two symplectic forms ω and ω′. In the
cases t = 0 and t = 1 we denote the Poisson brackets by
{, } and {, }′ respectively.

Consider now a gauge transformation a 7→ a+dλ. The
effect upon X will be

X 7→ X + Xλ, (7)

where Xλ is the Hamiltonian vector field

iXλ
Ω + dλ = 0 (8)

and LXλ
Ω = 0. The whole transformation induced by λ,

including the coordinate transformation ρ∗ corresponding
to a is

f
(λ)7→ f + {λ̃, f}′ (a)7→ ρ∗f + {ρ∗λ̃, ρ∗f}, (9)

where we have used ρ∗{λ̃, f}′ = {ρ∗λ̃, ρ∗f}. We shall give
an expression of λ̃ in the case of constant θ in Sect. 4.

Physically we can view the above coordinate transfor-
mations either as active or passive, i.e. we either have two
different symplectic structures ω, ω′ on the same manifold
related by an active transformation or we have just one
symplectic structure expressed in different coordinates.
The additional infinitesimal canonical transformation does
not change the symplectic structure. Let us mention that
the paper [11] is in fact an explicit realization of the Moser
lemma in the situation describing a D-brane in the back-
ground gauge field.

3 Deformation quantization

We would now like to consider the deformation quantiza-
tion [12] of the two symplectic structures ω and ω′ a la
Kontsevich. We follow the definitions and conventions of
[13].

The set of equivalence classes of Poisson structures on
a smooth manifold M depending formally on ~,

α(~) = α1~ + α2~
2 + . . . , [α, α] = 0, (10)

where [, ] is the Schouten-Nijenhuis bracket of polyvector
vector fields, is defined modulo the action of the group of
formal paths in the diffeomorphism group of M , start-
ing at the identity diffeomorphism. Within the frame-
work of Konstevich’s deformation quantization the equiv-
alence classes of Poisson manifolds can be naturally iden-
tified with the sets of gauge equivalence classes of star
products on the smooth manifold M . The Poisson struc-
tures α, α′ can be identified with the series α(~) = ~α
and α′(~) = ~α′, and via Kontsevich’s construction with
canonical gauge equivalence classes of star products. In
view of Moser’s Lemma the resulting star products will
also be equivalent in the sense of deformation theory.

Since the two star products ∗ and ∗′ on M , correspond-
ing to α(~) and α′(~), are equivalent, there exists an au-
tomorphism D(~) of A[[~]], which is a formal power series
in ~, starting with the identity, with coefficients that are

differential operators on A ≡ C∞(M), such that for any
two smooth functions f and g on M

f(~) ∗′ g(~) = D(~)−1(D(~)f(~) ∗ D(~)g(~)). (11)

Note, that we first have to take care of the classical part of
the transformation via pullback by ρ∗, so that the remain-
ing automorphism D(~) is indeed the identity to zeroth
order in ~. The complete map, including the coordinate
transformation is D = D(~) ◦ ρ∗.

The inner automorphisms of A[[~]], given by similarity
transformation

f(~) 7→ Λ(~) ∗ f(~) ∗ (Λ(~))−1, (12)

with invertible Λ(~) ∈ A[[~]], do not change the star prod-
uct. Infinitesimal transformations that leave the star prod-
uct invariant are necessarily derivations of the star-
product. The additional gauge transformation freedom
A → A + dλ in Moser’s lemma induces an infinitesimal
canonical transformation and, after quantization, an in-
ner derivation of the star product ∗′. We will use the fact
that this transformation (including classical and quantum
part) can be chosen as

f 7→ f + iλ̃ ∗′ f − if ∗′ λ̃. (13)

This, as we shall see, directly lead to the celebrated rela-
tion of a noncommutative gauge transformation.

We shall not try to review deformation quantization
and Kontsevich’s formula for the star product in its full
generality here. A detailed description is given in the orig-
inal paper [13], the path integral representation using a
topological sigma-model on the disc was developed in [14]
and an excellent historical overview of deformation quan-
tization and many references can be found in [15]. We
only note that in the case of constant Poisson tensor α
one obtains the well-known Moyal bracket. We are, how-
ever, interested in the existence of a natural star product
for any Poisson manifold, which is guaranteed according
to Kontsevitch. In this letter we technically only use the
corresponding result for symplectic manifolds [16–18].

In the following we will absorb ~ in θ, θ′, etc.

4 Seiberg-Witten transformation

To make contact with the discussion of Seiberg and Witten
we take ω to be the symplectic form on R

2n, the D-brane
world-volume, induced by a constant B-field:

ω = θ−1
ij dxi ∧ dxj (14)

with

θij =
(

1
g + B

)ij

A

; (15)

g is the constant closed string metric and the subscript A
refers to the antisymmetric part of a matrix (we have set
2πα′ = 1). In the zero slope limit

ω = B. (16)
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For ω′ we take

ω′ ≡ (θ′)−1
ij dxi ∧ dxj = ω + F, (17)

where F = Fijdxi ∧ dxj is the field strength of the rank
one gauge field A. (The extension of the following to higher
rank is straightforward.) We are in the situation of Sect. 2,
with a = A being the gauge field. The star products
induced by Poisson structures θ and θ′ are equivalent
and the equivalence transformation (including the clas-
sical part) is given by the map D = D ◦ ρ∗, where ρ∗ =
id + θijAj∂i + 1

2θklAl∂kθijAj∂i + 1
2θklθijAlFkj∂i + o(θ3),

see also [11]; D acts trivially on xi to this order, but can
of course in principle be computed order by order to any
order in θ. It is convenient to write the result of D acting
on the coordinate functions xi in the form [11,7,8]

Dxi = xi + θijÂj

= xi + θijAj +
1
2
θklθijAl(∂kAj)

+
1
2
θklθijAlFkj + o(θ3) (18)

with Â a function of x depending on θ, A and derivatives
of A, as shown. It is obvious that Â has the form Â = A+
o(θ)+. . ., since to lowest order in θ it has to reproduce the
coordinate transformation ρ∗ relating the two symplectic
forms ω and ω′.

Let us now discuss what effect a gauge transformation
A 7→ A + dλ has in this picture: It represents the freedom
in the choice of symplectic potential A′ = 1

2ωjix
jdxi + A

for ω′. In Sect. 2 we found that classically the gauge trans-
formation amounts to an infinitesimal canonical transfor-
mation, and, after deformation quantization, it has the
form (13). The whole map is

f
(λ)7→ f +iλ̃∗′f −if ∗′ λ̃

(A)7→ Df +iDλ̃∗Df −iDf ∗Dλ̃. (19)

Let us introduce λ̂ as a shorthand for Dλ̃. λ̂ obviously
depends on θ, A, derivatives of A and the classical gauge
transformation λ. Explicitely:

λ̃ = λ − 1
2
θijAj(∂iλ) + o(θ2),

λ̂ = λ +
1
2
θijAj(∂iλ) + o(θ2). (20)

We would like to express the result of the map (19) acting
on the coordinates xi again in the form (18), but with Âj

replaced with Âj + δÂj . Using (18) and xi ∗xj −xj ∗xi =
iθij to compute the ∗-commutator [λ̂ ∗, xi], we find

δÂi = ∂iλ̂ + iλ̂ ∗ Âi − iÂi ∗ λ̂. (21)

We see, as expected, that the relation between Â and A
implied by the coordinate transformation (18) is precisely
the same as the one proposed by Seiberg and Witten based
on the expectation that an ordinary gauge transformation

on A should induce a noncommutative gauge transforma-
tion (21) on Â. We furthermore see that within the frame-
work of deformation quantization a la Kontsevich the ex-
istence of such a transformation between the commutative
and noncommutative descriptions is guaranteed. It is not
hard to compute the terms of higher order in θ directly in
our approach.

In essence the Seiberg-Witten transformation between
the commutative and noncommuative description of D-
branes is possible due to equivalence of two star products,
namely the one defined by the Poisson tensor θ (15) and
the another one defined by the Poisson θ′ (17).

Let us remark that we make contact here with another
approach to noncommutative gauge theory [19], whose re-
lations and manipulations resemble the ones of this sec-
tion, but with a different philosophy. Equation (18) defines
a covariant coordinate in that theory.

5 Relation to boundary states formalism

The string boundary state coupled to the U(1) gauge field
admits a path integral representation. Let |D〉 be a Dirich-
let boundary state, Xi(σ)|D〉 = 0 at some fixed instant
τ = 0. Xi are the string coordinates and Pi the conju-
gate momenta. The boundary state |B〉 coupled to a U(1)
gauge field A′ is then given as

|B〉 =
∫

Dx exp(i
∫

dσA′
i(x)∂σxi − Pix

i)|D〉. (22)

The path integral itself can be interpreted within the
framework of Kontsevich deformation quantization [14]:
If we denote ∗′ the star product obtained a la Kontsevich
from ω′ = dA′ then the path integral is the trace of the
path-ordered exponential P[exp(−i

∫
dσPix

i)]∗′ , where we
assume implicitly the ∗′-product within the exponential.
In the notation of the previous section A′ = 1

2Bijx
i∂σxj +

A. Let us translate the gauge equivalence of the star prod-
ucts ∗′ and ∗ to the language of boundary states. We get
the condition∫

Dx exp
(

i

∫
dσ

1
2
Bijx

i∂σxj + A − Pix
i

)
|D〉 (23)

=
∫

Dx exp
(

i

∫
dσ

1
2
Bijx

i∂σxj − Pi(xi + θijÂj)
)

|D〉.

This is exactly the condition of [8]. The above equality
is evidently true even without path integrals on its both
sides acting on the Dirichlet boundary state.
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